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Abstract

In this paper, we introduce hemiellipsoid- and inverted hemiellipsoid-modified semiconductor nanowire (NW)
optical structures, and present a systematic investigation on light management of the corresponding arrays based
on GaAs. It is found that the modification makes well utilization of light scattering and antireflection, thus leading
to excellent light confinement with limited effective thickness. For example, 90% and 95% of the incident photons
with the energy larger than the bandgap energy can be trapped by the inverted hemiellipsoid-modified NW arrays
with the effective thicknesses of only ~ 180 and 270 nm, respectively. Moreover, excellent light confinement can be
achieved in a broad range of the modification height. Compared to the corresponding array without top
modification, spatial distribution of the photo-generated carriers is expanded, facilitating carrier collection especially
for the planar pn junction configuration. Further investigation indicates that these composite nanostructures
possess excellent omnidirectional light confinement, which is expected for advanced solar absorbers.
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Background
Solar electricity based on the photovoltaic (PV) effect
has made a remarkable progress in the past decades,and
is gradually changing the global energy structure [1–10].
To meet the continuously increasing demand of PV
electricity, large-scale deployment of PV modules is ur-
gent, and meanwhile restricted by the relatively high
price, which is mainly related to high material costs of
the market-dominated PV products based on crystalline
silicon wafers [11–20]. Although thin film-based PV de-
vices have the huge potential for material cost reduction,
poor light absorption due to the limited optical thickness
is a big concern and needs to be addressed by introdu-
cing light management structures, such as antireflection

coatings and/or substrate texturing, which would result
in the extra cost [21–27].
Different from the traditional planar structures, nano-

structured semiconductor solar absorbers possess superior
properties in light management and photo-generated car-
rier collection and thus exhibit huge potential in applica-
tion of high performance-to-cost optoelectronic devices
including solar cells and photodetectors [28–36]. Thanks
to the extensive efforts dedicated by the related
researchers, various semiconductor nanostructures such
as nanowire (NW) [37–45], nanocone [46–50], nanopit
[51–53], and nanohemisphere [54, 55] arrays have been
introduced and investigated from both theoretical and ex-
perimental aspects. Effects of light management modes in-
cluding modification of spatial refractive index for
antireflection, leaky mode, guided longitudinal resonance,
light scattering, and surface plasmon resonance on light
trapping have been understood and emphasized with dif-
ferent weights for different nanostructures [56–61]. How-
ever, each individual light management mode cannot
fulfill efficient light confinement in a broad spectral range,
especially for solar cell applications. Accordingly,
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combination of different light management modes is ne-
cessary for full spectral absorption enhancement. Mean-
while, considering the concerns related to fabrication
issues, e.g., high reproducibility at low cost, simple struc-
ture for light absorbers is required.
To realize more efficient light confinement with limited

effective thickness for semiconductor NW arrays, top
modification using hemiellipsoid and inverted hemiellip-
soid structures is introduced and systematically investi-
gated on the light management behaviors in this paper.
Owing to the synergetic effect of effective antireflection
and light scattering, light confinement is significantly
boosted with reduced effective thickness as compared to
the NW arrays without modification. For the case of GaAs
NW arrays, 90% and 95% of the incident photons with the
energy larger than the bandgap energy can be trapped by
the inverted hemiellipsoid-modified NW arrays with the
effective thickness of ~ 180 and 270 nm. Moreover, further
study indicates that the related structures deliver excellent
light confinement under oblique incidence.

Methods
In this study, squarely arranged NW arrays (see Fig. 1a)
with an optimized period of 600 nm [56, 62] are investi-
gated under different structural parameters of the nano-
wire diameter (D), total height (H), and modification
height (h), as labeled in Fig. 1b. To calculate the
Maxwell’s equations and thus the energy flux distribu-
tion of the optical systems, a finite difference time do-
main method is employed. Periodic boundary conditions
are applied onto the side walls of a unit to construct the
related arrays, and meanwhile benefit saving of the cal-
culation source and time. At the upper and bottom

bounds of the unit, the perfect matching layer boundary
is used to absorb all outgoing photons and thus to deter-
mine light reflection (R) and transmission (T). Then
light absorption (A) is obtained following the relation-
ship of A = 1–R–T.
In this paper, the representative semiconductor opto-

electronic material, GaAs, is adopted for investigation.
Considering the bandgap energy of 1.42 eV and the main
energy region of the solar irradiation, optical behaviors in
a spectral range of 300–1000 nm are investigated. To
more quantitatively compare light trapping of the optical
systems, normalized theoretical photocurrent density, NJph,
is adopted [27, 63], which is defined as the ratio of the the-
oretical photocurrent density of the investigated structure
to that (~ 32.0 mA/cm2 at AM 1.5G [64] illumination for
GaAs) of an ideal absorber with the same bandgap energy
both at an internal quantum efficiency of 100%.

Results and Discussion
Figure 2 summarizes NJph as a function of h for the
hemiellopsoid- and inverted hemiellipsoid-modified
GaAs NW arrays with H of (a) 1000, (b) 2000, and (c)
3000 nm; and D of 100, 300 and 500 nm. One notes that
NJph for all arrays with D of 100 nm monotonously de-
creases with the increased h. However, for such arrays
with larger D of 300 and 500 nm, enhanced light con-
finement can be generally observed after introducing top
modification with appropriate sizes, except for the case
of D = 300 nm and H = 1000 nm. Moreover, the thicker
the NWs, the more remarkable enhancement of light
confinement can be realized. It is notable that, as exhib-
ited in Fig. 2a, NJph of 0.90 and 0.95 can be achieved for
the inverted hemiellipsoid modification with the effective

Fig. 1 a Schematic of a hemiellipsoid-modified NW array, and b a unit of an inverted hemiellipsoid-modified NW array for optical simulations.
The structural parameters investigated in this study are the nanowire diameter (D), total height (H), and modification height (h) as labeled
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thicknesses of only ~ 180 and 270 nm for the array
with D = 500 nm, H = h = 1000 nm and the array with
D = 500 nm, H = 1000 nm and h = 750 nm, respectively.
It is well known that antireflection is an inherent func-

tion for NW arrays due to the reduced difference be-
tween refractive indices of the surrounding environment
(normally air) and optical structure as compared to their
flat wafer/film counterparts [27, 52]. However, antireflec-
tion does not consequently result in effective light ab-
sorption because of the possible enhancement of light
transmission through the absorbers. In this study, the ar-
rays with D of 100 nm possess the lowest filling ratio
and thus the smallest effective refractive index. Although
these arrays exhibit excellent antireflection, light trans-
mission is significantly strong, especially in the long
wavelength regime (see Fig. 3a), i.e., the high-density re-
gion of photons. Furthermore, as indicated in Fig. 3a,
top modification has little contribution to antireflection,
but leads to enhanced light transmission, thus making
light absorption worse (see Fig. 3b), and resulting in the
decrease of NJph for the 100 nm NW diameter arrays. In
addition, one notes that the main light confinement
mechanism is the HE11 leaky mode (see the inset of
Fig. 3b) for the NW arrays of D = 100 nm [65].
For the NW arrays with larger D of 300 and 500 nm,

the filling ratio and thus the effective refractive index in-
crease, and light reflection becomes evident, as shown in

Fig. 3c. For these arrays, appropriate modification using
both hemiellipsoid and inverted hemiellipsoid can re-
markably reduce light reflection, thus enhances light ab-
sorption (see Fig. 3c and e). Moreover, it is evident that
excellent light confinement can be achieved in a broad
range of modification height, thus providing convenience
for fabricating the related high-performance devices. For
example, as exhibited in Fig. 2b, NJph of 0.95 can be
achieved for a 500 nm diameter NW array with inverted
hemiellipsoid in range of 350–2000 nm or with hemiel-
lipsoid in range of 600–2000 nm. However, excessive
modification (i.e., h is too large) especially for the case
using inverted hemiellipsoids would lead to significantly
enhanced light transmission and reduced light absorption
around the bandgap energy, as exhibited in Fig. 3d and e.
Accordingly, the first increase and following decrease of
NJph is observed for the related NW arrays (see Fig. 2).
Figure 3f shows the absorption spectra of the pure

NW arrays with D of 100, 300 and 500 nm, and H of
2000 nm. It is evident that light absorption edge shifts
towards long wavelength, and meanwhile the main light
management mechanism changes from leaky mode to
light scattering as D increases. Moreover, for NWs with
D of 500 nm, some absorption oscillations around
800 nm can be observed, which are attributed to the
guided longitudinal resonances, as exhibited in the inset
of Fig. 3f. It is known that as D increases, the threshold/

Fig. 2 Normalized theoretical photocurrent density (NJph) for the hemiellipsoid- and inverted hemiellipsoid-modified GaAs NW arrays as a
function of the hemiellipsoid height (h) at different total heights of a 1000, b 2000, and c 3000 nm. The wire diameters (D) are 100, 300 and
500 nm. The red dot line and red dash line in each figure denote the values of NJph of 0.90 and 0.95, respectively
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longest wavelength that can form a guided longitudinal
mode also increases [56, 57]. For long-wavelength light,
the amplitude decay when propagating along the wire
axis is relatively weaker than that of short-wavelength
light because of the smaller absorption coefficient. If the
wire length is not too long, the reflected wave from the
NW bottom can interfere with the incoming wave to
form the guided longitudinal resonances.
To further understand influence of top modification on

light management, spatial distribution of the carrier gener-
ation rate for the arrays (H = 2000 nm and D = 500 nm)
modified by hemiellipsoids (h = 500 nm) and inverted
hemielliopsoids (h = 500 nm) at AM 1.5G illumination is
shown in Fig. 4. The corresponding distribution in the
pure NW array with H and D of 2000 and 500 nm is also
presented for comparison. It is obvious that the

distribution region of photo-generated carriers is ex-
panded owing to the synergetic effect of enhanced anti-
reflection and light scattering after introducing the
appropriate top modification. It is consistent with the
boosted NJph/enhanced light confinement for the modi-
fied arrays, as exhibited in Fig. 2b. Moreover, the ex-
pansion of the photo-generated carrier distribution is
beneficial for carrier collection especially for the planar
pn junction configuration, and meanwhile makes the
structures more tolerable to bulk defects/poor material
qualities. It is worth noting that compared to the pure
NW array, top modification also leads to the remark-
ably increased carrier density on the surface, and sur-
face passivation is necessary to reduce surface
recombination losses of photo-generated carriers for
such arrays [66, 67].

Fig. 3 a Reflection/transmission and b absorption of the arrays of H = 2000 nm and D = 100 nm. c Reflection, d transmission, and e absorption
of the arrays of H = 2000 nm and D = 500 nm. f Absorption of the pure NW arrays with D of 100, 300, and 500 nm and H = 2000 nm. The inset of
b shows the electric field strength distribution of the HE11 mode, and the white dotted circle outlines the wire periphery. The inset of f exhibits
the electric field strength distribution of the pure NW array with H = 2000 nm and D = 500 nm at the wavelength of 810 nm
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As an excellent light absorber, effective light trapping
under oblique incidence is necessary. Figure 5 exhibits
the absorption spectra at the incident angle, α = 0, 30
and 60 degrees (°) for the (a) hemiellipsoid- and (b)
inverted hemiellipsoid-modified GaAs NW arrays with
the same structural parameters to the arrays shown in
Fig. 4. It is remarkable that even at α = 60°, only limited
degradation is observable, indicating excellent omnidir-
ectional light confinement by both modifications. The
calculated photocurrent density, Jph for these two arrays
is summarized in the inset of Fig. 5a and b. One notes
that compared to Jph of ~ 27.7 and 16.0 mA/cm2 for an
ideal GaAs absorber at α = 30° and 60°, respectively, the
corresponding value for both modified NW arrays only
shows limited reduction.
It is known that for experimentally fabricated NWs,

the surfaces are normally not such smooth like the ones
adopted in the simulations. To check the validity of the

simulation results for guiding experimental study, optical
characteristics of the GaAs NW arrays with an ortho-
hexagonal wire cross-section were simulated and com-
pared with that of the corresponding NW arrays with a
circle wire cross-section. Figure 6 compares the absorp-
tion spectra of these two kinds of arrays with the same
volume (characterized by the diameter (100, 300 and
500 nm) of the circle NWs) and wire length of 2 μm in
the spectral range of 310 nm (4 eV) to 873.2 nm
(1.42 eV, i.e., the bandgap energy of GaAs). One notes
that there are no evident differences of the optical be-
haviors between these two kinds of NW arrays in the
considered spectral range. Accordingly, it is believed that
the simulation results concluded from the NW arrays
with a circle wire cross-section are also applicable to
other arrays with a different wire cross-section.
Moreover, from the above discussion, it is evidenced

that combination of the top modification for spatial
modulation of the refractive index and enhanced light
scattering by the bottom structure with matched charac-
teristic dimension is an easily operated guideline for
guiding design of high-performance light absorbers.

Conclusions
In this paper, top modification of semiconductor nano-
wires using hemiellipsoids and inverted hemiellipsoids
is introduced for further improving light confinement
in the corresponding arrays. Systematic investigation
unveils that high performance light management at lim-
ited effective thicknesses can be realized owing to the
synergetic effect of improved antireflection and light
scattering after introducing appropriate modification.
For example, the inverted hemiellipsoid-modified GaAs
nanowire array can trap 90% and 95% of the incident
photons with the energy larger than the bandgap energy
at the effective thickness of only ~ 180 and 270 nm. It
is found that the top-modified NW arrays exhibit excel-
lent light trapping capability in a broad range of the

Fig. 4 Spatial distribution of the photo-generated carrier generation
rate at AM 1.5G illumination for the arrays (H = 2000 nm and
D = 500 nm) top-modified by (left) hemiellipsoids (h = 500 nm) and
(middle) inverted hemiellipsoids (h = 500 nm). The generation rate
(right) in the pure NW array of H = 2000 nm and D = 500 nm is
presented for comparison

Fig. 5 Absorption spectra of the a hemiellipsoid- and b inverted hemiellipsoid-modified GaAs NW arrays (H = 2000 nm, D = 500 nm, and h = 500 nm)
at the incident angle (α) of 0, 30, and 60°. The inset tables summarize the theoretical photocurrent density (Jph) for these two top-modified NW arrays
at the corresponding incident angles, respectively
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modification height. Meanwhile, spatial distribution of
the photo-generated carriers is expanded for the
modified nanowire arrays compared to the corre-
sponding one without top modification, further indi-
cating the improved light management. It would
facilitate carrier collection, especially for the planar
pn junction configuration. Moreover, further study in-
dicates that the modified optical structures exhibit ex-
cellent omnidirectional light confinement, as expected
for advanced light absorbers.

Abbreviations
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